59 research outputs found

    Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle.

    Get PDF
    The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium

    The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1

    Get PDF
    Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1+ phenotype) or not (TTSS-1− phenotype). Here, we studied in vitro the TTSS-1+ phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1+ phenotype grew slower than cells of the TTSS-1− phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1+ subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1− cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype

    Evolution of Stress Response in the Face of Unreliable Environmental Signals

    No full text
    Most organisms live in ever-changing environments, and have to cope with a range of different conditions. Often, the set of biological traits that are needed to grow, reproduce, and survive varies between conditions. As a consequence, organisms have evolved sensory systems to detect environmental signals, and to modify the expression of biological traits in response. However, there are limits to the ability of such plastic responses to cope with changing environments. Sometimes, environmental shifts might occur suddenly, and without preceding signals, so that organisms might not have time to react. Other times, signals might be unreliable, causing organisms to prepare themselves for changes that then do not occur. Here, we focus on such unreliable signals that indicate the onset of adverse conditions. We use analytical and individual-based models to investigate the evolution of simple rules that organisms use to decide whether or not to switch to a protective state. We find evolutionary transitions towards organisms that use a combination of random switching and switching in response to the signal. We also observe that, in spatially heterogeneous environments, selection on the switching strategy depends on the composition of the population, and on population size. These results are in line with recent experiments that showed that many unicellular organisms can attain different phenotypic states in a probabilistic manner, and lead to testable predictions about how this could help organisms cope with unreliable signals.ISSN:1553-734XISSN:1553-735

    Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut

    No full text
    Immunology research in the last 50 years has made huge progress in understanding the mechanisms of anti-bacterial defense of deep, normally sterile, tissues such as blood, spleen and peripheral lymph nodes. In the intestine, with its dense commensal microbiota, it seems rare that this knowledge can be simply translated. Here we put forward the idea that perhaps it is not always the theory of immunology that is lacking to explain mucosal immunity, but rather that we have overlooked crucial parts of the mucosal immunological language required for its translation: namely intestinal and bacterial physiology. We will try to explain this in the context of intestinal secretory antibodies (mainly secretory IgA), which have been described to prevent, to alter, to not affect, or to promote colonization of the intestine and gut-draining lymphoid tissues, and where effector mechanisms have remained elusive. In fact, these apparently contradictory outcomes can be generated by combining the basic premises of bacterial agglutination with an understanding of bacterial growth (i.e. secretory IgA-driven enchained growth), fluid handling and bacterial competition in the gut lumen

    Enabling direct microcalorimetric measurement of metabolic activity and exothermic reactions onto microfluidic platforms via heat flux sensor integration

    No full text
    All biological processes use or produce heat. Traditional microcalorimeters have been utilized to study the metabolic heat output of living organisms and heat production of exothermic chemical processes. Current advances in microfabrication have made possible the miniaturization of commercial microcalorimeters, resulting in a few studies on the metabolic activity of cells at the microscale in microfluidic chips. Here we present a new, versatile, and robust microcalorimetric differential design based on the integration of heat flux sensors on top of microfluidic channels. We show the design, modeling, calibration, and experimental verification of this system by utilizing Escherichia coli growth and the exothermic base catalyzed hydrolysis of methyl paraben as use cases. The system consists of a Polydimethylsiloxane based flow-through microfluidic chip with two 46 µl chambers and two integrated heat flux sensors. The differential compensation of thermal power measurements allows for the measurement of bacterial growth with a limit of detection of 1707 W/m3, corresponding to 0.021OD (2 ∙ 107 bacteria). We also extracted the thermal power of a single Escherichia coli of between 1.3 and 4.5 pW, comparable to values measured by industrial microcalorimeters. Our system opens the possibility for expanding already existing microfluidic systems, such as drug testing lab-on-chip platforms, with measurements of metabolic changes of cell populations in form of heat output, without modifying the analyte and minimal interference with the microfluidic channel itself.ISSN:2096-1030ISSN:2055-743

    Monitoring of Dynamic Microbiological Processes Using Real-Time Flow Cytometry

    Get PDF
    <div><p>We describe a straightforward approach to continuously monitor a variety of highly dynamic microbiological processes in millisecond resolution with flow cytometry, using standard bench-top instrumentation. Four main experimental examples are provided, namely: (1) green fluorescent protein expression by antibiotic-stressed <i>Escherichia coli</i>, (2) fluorescent labeling of heat-induced membrane damage in an autochthonous freshwater bacterial community, (3) the initial growth response of late stationary <i>E. coli</i> cells inoculated into fresh growth media, and (4) oxidative disinfection of a mixed culture of auto-fluorescent microorganisms. These examples demonstrate the broad applicability of the method to diverse biological experiments, showing that it allows the collection of detailed, time-resolved information on complex processes.</p> </div
    corecore